
ミア リアーズ ウル ハック
MIAN RIAZ UL HAQUE
助教
学部等 |
総合理工学部
知能情報デザイン学科
|
---|---|
researchmap 個人URL |
https://researchmap.jp/mian_riaz |
SDGs |
![]() ![]() ![]() ![]() ![]() |
ホームページURL |
産業分野
- 製造業 / 電子部品・デバイス・電子回路製造業
researchmap
研究分野
- 情報通信 / 計算機システム / Multi site VLSI test
- 環境・農学 / 環境農学 / Sea grass Detection of under water water
研究キーワード
Wafer-level Variation Modeling, Multi-site RF IC Testing, Hierarchical Gaussian Process, Computer Vision, Seagress, Semisupervised
研究概要
1. We propose a Gaussian process-based method for wafer-level performance prediction in multi-site testing, enhancing accuracy by leveraging hierarchical modeling of site-to-site variations.
2. HALT (Hierarchical Active Learning-based Technique) improves seagrass image classification by 1.4% using strategic data selection and knowledge transfer from pre-trained models, addressing limited labeled data challenges effectively.
2. HALT (Hierarchical Active Learning-based Technique) improves seagrass image classification by 1.4% using strategic data selection and knowledge transfer from pre-trained models, addressing limited labeled data challenges effectively.